Failure Load Prediction of Castellated Beams Using Artificial Neural Networks

نویسندگان

  • L. Amayreh
  • M. P. Saka
چکیده

This paper explores the use of artificial neural networks in predicting the failure load of castellated beams. 47 experimental data collected from the literature cover the simply supported beams with various modes of failure, under the action of either central single load, uniformly distributed load or two-point loads acting symmetrically with respect to the center line of the span. The data are arranged in a format such that 8 input parameters cover the geometrical and loading properties of castellated beams and the corresponding output is the ultimate failure load. A back-propagation artificial neural network is developed using Neuro-shell predictor software, and used to predict the ultimate load capacity of castellated beams. The main benefit in using neural network approach is that the network is built directly from the experimental or theoretical data using the self-organizing capabilities of the neural network. Results are compared with available methods in the literature such the Blodgett’s Method and the BS Code. It is found that the average ratio of actual to predicted failure loads of castellated was 0.99 for neural network, 2.2 for Blodgett’s Method, and 1.33 for BS Code. It is clear that neural network provides an efficient alternative method in predicting the failure load of castellated beams.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of Ultimate Torsional Strength of Reinforcement Concrete Beams Using Finite Element Analysis and Artificial Neural Network

Due to lack of theory of elasticity, estimation of ultimate torsional strength of reinforcement concrete beams is a difficult task. Therefore, the finite element methods could be applied for determination of strength of concrete beams. Furthermore, for complicated, highly nonlinear and ambiguous status, artificial neural networks are appropriate tools for prediction of behavior of such states. ...

متن کامل

Prediction the Return Fluctuations with Artificial Neural Networks' Approach

Time changes of return, inefficiency studies performed and presence of effective factors on share return rate are caused development modern and intelligent methods in estimation and evaluation of share return in stock companies. Aim of this research is prediction of return using financial variables with artificial neural network approach. Therefore, the statistical population of this study incl...

متن کامل

Determination of Lateral load Capacity of Steel Shear Walls Based on Artificial Neural Network Models

In this paper, load-carrying capacity in steel shear wall (SSW) was estimated using artificial neural networks (ANNs). The SSW parameters including load-carrying capacity (as ANN’s target), plate thickness, thickness of stiffener, diagonal stiffener distance, horizontal stiffener distance and gravity load (as ANN’s inputs) are used in this paper to train the ANNs. 144 samples data of each of th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006